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Web Appendix

Examples, Applications and Additional Results

Definition of MPE

Consider a general n-person infinite-stage game, where each individual can take an action at

every stage. Let the action profile of each individual be ai =
(
a1i , a

2
i , . . .

)
for i = 1, . . . , n, with

ati ∈ Ati and ai ∈ Ai =
∏∞
t=1A

t
i. Let ht =

(
a1, . . . , at

)
be the history of play up to stage t (not

including stage t), where as = (as1, . . . , a
s
n), so h0 is the history at the beginning of the game,

and let Ht be the set of histories ht for t : 0 ≤ t ≤ T − 1.

We denote the set of all potential histories up to date t by

Ht =
t⋃

s=0

Hs.

Let t-continuation action profiles be ai,t =
(
ati, a

t+1
i , . . .

)
for i = 1, . . . , n, with the set of con-

tinuation action profiles for player i denoted by Ai.t. Symmetrically, define t-truncated action

profiles as ai,−t =
(
a1i , a

2
i , . . . , a

t−1
i

)
for i = 1, . . . , n, with the set of t-truncated action profiles

for player i denoted by Ai,−t. We also use the standard notation ai and a−i to denote the action

profiles for player i and the action profiles of all other players (similarly, Ai and A−i). The payoff

functions for the players depend only on actions, i.e., player i’s payoff is given by ui
(
a1, . . . , an

)
.

A pure strategy for player i is

σi : H∞ → Ai.

A t-continuation strategy for player i (corresponding to strategy σi) specifies plays only after

time t (including time t), i.e.,

σi,t : H∞ \Ht−2 → Ai,t,

where H∞ \Ht−2 is the set of histories starting at time t.

We then have:

Definition 6 (Markovian Strategies) A continuation strategy σi,t is Markovian if

σi,t (ht−1) = σi,t

(
h̃τ−1

)
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for all τ ≥ t, whenever ht−1, h̃τ−1 ∈ H∞ are such that for any ai,t, ãi,τ ∈ Ai,t and any a−i,t ∈

A−i,t,

ui (ai,t, a−i,t | ht−1) ≥ ui (ãi,τ , a−i,t | hτ−1)

implies

ui

(
ai,t, a−i,t | h̃t−1

)
≥ ui

(
ãi,τ , a−i,t | h̃τ−1

)
.

Markov perfect equilibria in pure strategies are defined formally as follows:

Definition 7 (MPE) A pure strategy profile σ̂ = (σ̂1, ..., σ̂n) is Markov perfect equilibrium

(MPE) (in pure strategies) if each strategy σ̂i is Markovian and

ui (σ̂i, σ̂−i) ≥ ui (σ̂i, σ̂−i) for all σi ∈ Σi and for all i = 1, . . . , n.

Examples

Example 3 (Nonexistence if β is not close to 1) There are 4 players, I = {1, 2}, and 4

states, S = {A,B,C,D}. Players’ preferences are given by: w1 (A,B,C,D) = (90, 70, 60, 5),

w2 (A,B,C,D) = (5, 50, 40, 30), w3 (A,B,C,D) = (25, 50, 40, 30), w4 (A,B,C,D) =

(25, 25, 40, 30). Winning coalitions are defined as follows: in states A, B, C, player 1 is the

dictator, while in state D, players 2, 3, 4 make decisions by majority voting. It is straightfor-

ward to show that Assumptions 1, 2. (The only condition to be checked is that Assumption

2(b) holds for state s = D, and this follows from the fact that B �D D, C �D D, but A �D B

and A �D C.) Suppose, however, that the discount factor β is not close to 1, say, β = 1/2;

there are either no transaction costs or small transaction costs. The protocol at any state is

π = (A,B,C,D) (with the current state skipped).

Suppose that there exists an equilibrium in pure strategies. Given that player 1 is the

dictator in states A, B, C, we immediately get that if the game is at state A, no transition will

happen, and if the game is at either B or C, then there will be an immediate transition to A.

Consider now what will happen if the state is D. Consider all four possibilities: no transition,

transition to A, transition to B, and transition to C.

If there is no transition in equilibrium and alternative C is voted, it will be accepted as

players 3 and 4 will support it (even though they prefer C, but not A where C ultimately leads,
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to D, they still prefer the path from C to A to staying in D. This also means that it will be

proposed along the equilibrium path. Hence, D cannot be stable.

If there is transition to A in equilibrium, then consider the last voting where, if reached on

or off the equilibrium path, A will be proposed. All of the players 2, 3, 4 will prefer to vote

against this alternative, as any other transition, as well as staying in D, will lead to a higher

payoff for each of them. Hence, transition to A cannot happen in equilibrium.

Suppose that there is transition to state B. Then again, players 2 and 4 would prefer to

stay in D, even though this may mean transiting to B in the next period. Voting against B

will, however, lead to voting on C, so we need to verify that C will be rejected at this voting.

Accepting C will lead to C and then to A, while rejecting will lead to D, and then (as transition

to B happens in equilibrium) to B and then to A. The latter is preferred by players 2 and 3,

which means that C will be rejected if B is rejected. Consequently, players 2 and 4 are better

off voting against B, which means that transition to B may not happen in equilibrium.

Finally, suppose that transition to state C happens in equilibrium. If so, when alternative

B is voted, players 2 and 3 will support B, as they prefer to transit to A through B rather than

through C. This implies that transition to C cannot happen in equilibrium either. In all cases,

we have reached a contradiction, which means that there is no pure-strategy MPE in this case.

Example 4 (Nonexistence without Transaction Costs) In this example, we show that

a MPE in pure strategies may fail to exist if we assume away the transaction cost. There

are 8 states S = {A,B,C,D,E, F,G,H} and 7 players. The set of winning coalitions are:

WA = {X ∈ C : |{1, 2, 3} ∩X| ≥ 2} (i.e., majority voting between 1, 2, 3), WB = [4], WD = [5],

WF = [6],WC =WE =WG =WH = [7] (here, [i] denotes the set of winning coalitions where i is

the dictator, so [i] = {X ∈ C : i ∈ X}). The payoffs are as follows: w1 (·) = (0, 30, 0, 0, 20, 0, 0, 1),

w2 (·) = (0, 0, 0, 30, 0, 0, 20, 1), w3 (·) = (0, 0, 20, 0, 0, 30, 0, 1), w4 (·) = (0, 0, 1, 0, 0, 0, 0, 0),

w5 (·) = (0, 0, 0, 0, 1, 0, 0, 0), w6 (·) = (0, 0, 0, 0, 0, 0, 1, 0), w7 (·) = (0, 0, 0, 0, 0, 0, 0, 1). It is

straightforward to show that Assumptions 1, 2 are satisfied (it is helpful to notice that the

only state s that satisfies s �A A is s = H).

Evidently, state H is stable (dictator 7 will never deviate), and similarly any of the states

E,F,G will immediately lead to H. It is also evident that B will immediately lead to C, because

C is the only state where dictator 4 receives a positive utility; similarly, D immediately leads
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to E and F immediately leads to G. Let us prove that no move from state A can form a

pure-strategy equilibrium. First, it is impossible to stay in A: players 1, 2, 3 would be better off

moving to H. Moving to H immediately is not possible in an equilibrium either: Then players

1 and 3 would rather deviate and move to B, which would then lead to C and only then to H,

since the average payoff of this path would be higher for each of these players (recall that the

discount factor is close to 1).

Let us consider possible moves to B and C (the moves to D,E, F,G are considered similarly).

If the state were to change to C, then players 1 and 2 would rather deviate and move to D (and

then to E, followed by H). Finally, if the state were to change to B, then 2 and 3 could deviate

to F , so as to follow the path to G and H after that; this is better for these players than

moving to B, followed by C and H. So, without imposing a transaction cost it is possible that

a pure-strategy equilibrium does not exist.

Example 5 (Cycles without Transaction Costs) In this example, we show that in the

absence of transaction cost, an equilibrium may involve a cycle even though Assumptions 1,

2 hold. There are 6 players, I = {1, 2, 3, 4, 5, 6}, and 3 states, S = {A,B,C}. Players’

preferences are given by w1 (A,B,C) = (5, 10, 4), w2 (A,B,C) = (5, 4, 10), w3 (A,B,C) =

(4, 5, 10), w4 (A,B,C) = (10, 5, 4), w5 (A,B,C) = (10, 4, 5), w3 (A,B,C) = (4, 10, 5), and win-

ning coalitions are defined by WA = {X ∈ C : 1, 2 ∈ X}, WB = {X ∈ C : 3, 4 ∈ X}, WC =

{X ∈ C : 5, 6 ∈ X}. Then one can see that there is an equilibrium which involves moving from

state A to state B, from B to C, and from C to A. To see this, because of the symmetry it

suffices to see that the players will not deviate if the current state is A. The alternatives are to

stay in A or move to C. But staying in A hurts both player 1 and player 2 (for player 2 who

dislikes state B this is true because it postpones the move to C, the state that he likes best,

while for player 1 this is evident). At the same time, moving to C hurts player 1, because state

C is the worst of the three states for him not only in terms of stage payoff, but also in terms

of discounted present value (if the cycle continues, as it should due to the one-stage deviation

principle). So, this cycle constitutes a (Markov Perfect) equilibrium.

It is also easy to see that in this example, Assumptions 1, 2 are satisfied: in fact, there are

no two states s, s0 ∈ {A,B,C} such that s �s0 s0. Finally, notice that the aforementioned cycle

is not the only equilibrium. In particular, the cycle in the opposite direction may also arise in
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an equilibrium (this holds because of symmetry), and situation where all three states are stable

is also possible (indeed, if B and C are stable, then players 1 will always block transition from

A to C whereas player 2 will always block transition from A to B).

Example 6 (Nonexistence without Assumption 2(a)) There are 3 players, I = {1, 2, 3},

and 3 states, S = {A,B,C}. Players’ preferences satisfy w1 (A) > w1 (B) > w1 (C),

w2 (B) > w2 (C) > w2 (A), and w3 (C) > w3 (A) > w3 (B) (for example, w1 (A,B,C) =

(10, 8, 5), w2 (A,B,C) = (5, 10, 8), w3 (A,B,C) = (8, 5, 10)). Winning coalitions are given

by WA = {X ∈ C : 3 ∈ X}, WB = {X ∈ C : 1 ∈ X}, WA = {X ∈ C : 2 ∈ X} (in other words,

states A,B,C have dictators 1, 2, 3, respectively). We then have A �B B, B �C C, C �A A, so

Assumption 2(a) is violated.

It is easy to see that there are no dynamically stable states in the dynamic game in this case.

To see this, suppose that state A is dynamically stable, then state B is not, since player 1 would

enforce transition to A. Therefore, state C is stable: player 2, who is the dictator in C, knows

that a transition to B will lead to A, which is worse than C. However, then player 3, knowing

that C is stable, will have an incentive to move from A to C. In equilibrium this deviation

should not be profitable, but it is; hence, there is no equilibrium where A is stable. Now, given

the transaction costs, there is no MPE in pure strategies, since if no state is dynamically stable,

the players would benefit from blocking every single transition in every single state.

Let us now formally show that there is no mapping φ that satisfies Axioms 1–3. Assume

that there is such mapping φ. By Axiom 2, there is a stable state (for any state s, φ (s) is

stable). Without loss of generality, suppose that A is such a state: φ (A) = A. Then state C is

not stable: if it were, we would obtain a contradiction with Axiom 3, since C �A A. If C is not

stable, then either φ (C) = A or φ (C) = B. The first is impossible by Axiom 1, since player 2,

who is a member of any winning coalition in C, has w2 (C) > w2 (A). Therefore, φ (C) = B,

and by Axiom 2, φ (B) = B. But we have A �B B and φ (A) = A; this means, by Axiom 3,

that φ (B) = B cannot hold. This contradiction shows that with these preferences, there is no

mapping φ that satisfies Axioms 1–3.

Example 7 (Nonexistence without Assumption 2(b)) There are 3 players, I = {1, 2, 3},

and 4 states, S = {A,B,C,D}. Players’ preferences satisfy w1 (A) > w1 (B) > w1 (C) >
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w1 (D), w2 (B) > w2 (C) > w2 (A) > w2 (D), and w3 (C) > w3 (A) > w3 (B) > w3 (D)

(for example, w1 (A,B,C,D) = (10, 8, 5, 4), w2 (A,B,C,D) = (5, 10, 8, 4), w3 (A,B,C,D) =

(8, 5, 10, 4)). Winning coalitions are given by WA = WB = WC = {I} = {{1, 2, 3}},

WD = {{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} (in other words, in states A,B,C there is unanimity

voting rule, while in state D there is majority voting rule). We then have A �D D, A �D D,

A �D D and A �D B, B �D C, C �D A, so Assumption 2(b) is violated. Assume, in addition,

that KD = 3, and πD (1) = C, πD (2) = B, πD (3) = A.

In this case, states A,B,C are dynamically stable: evidently, player who receives 10 (1, 2, 3,

respectively) will block transition to any other state. Consider state D; it is easy to see that

it is not dynamically stable. Indeed, if it were, then all three players would be better off from

transition to either of the three other states A,B,C, so they must vote for any such proposal in

equilibrium. Now that it is not dynamically stable, we must have that some of proposals C,B,A

are accepted in equilibrium. Suppose that A is accepted, then B may not be accepted (because

two players, 1 and 3, strictly prefer A to B), and therefore C must be accepted (because two

players, 2 and 3, strictly prefer C to A). But then A may not be accepted, as players 2 and

3 would prefer to have it rejected so that C is accepted in the next period, and thus A must

be rejected in the equilibrium. This contradicts our assertion that A is accepted, and we would

obtain a similar contradiction if we assumed that some other proposal is accepted. Hence, there

is no MPE in pure strategies in this case.

We now show that there is no mapping φ that satisfies Axioms 1–3. Assume that there is

such mapping φ. Since for each of the states A,B,C there is no state that is preferred to it by

all three players, then Axiom 1 implies that φ (A) = A, φ (B) = B, and φ (C) = C. Consider

state D. If φ (D) = D, this would violate Axiom 3, since, for instance, state A satisfies A �D D

and φ (A) = A. Hence, φ (D) 6= D; without loss of generality assume φ (D) = A. But then state

C satisfies C �D A, C �D D, and φ (C) = C. By Axioum 3 we cannot have φ (D) = A. This

contradiction proves that there does not exist mapping φ that satisfies Axioms 1–3.

Example 8 (Multiple Equilibria without Assumption 3) There are 2 players, I = {1, 2},

and 3 states, S = {A,B,C}. Players’ preferences satisfy w1 (A) > w1 (B) > w1 (C),

w2 (B) > w2 (A) > w2 (C) (for example, w1 (A,B,C) = (5, 3, 1), w2 (A,B,C) = (3, 5, 1)).

Winning coalitions are given by WA = WB = WC = {I} = {{1, 2}} (in other words, there is a
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unanimity voting rule in all states A,B,C). Then Assumptions 1 and 2(a,b) are satisfied, while

Assumption 3 is violated (both A and B are preferred to C, but neither A �C B nor B �C A).

One can easily see that in this case there exist two mappings, φ1 and φ2, which satisfy Axioms

1–3. Let φ1 (A) = φ1 (C) = A and φ1 (B) = B. Let φ2 (A) = A and φ2 (B) = φ2 (C) = B.

Mappings φ1 and φ2 differ in only that the first one maps state C to state A, and the second

one maps state C to state A. It is straightforward to verify that φ1 and φ2 satisfy Axioms 1–3,

and also that no other mapping satisfies these Axioms. Note that the sets of stable states under

these two mappings satisfy Dφ1 = {A,B} = Dφ2 , as they should according to Theorem 1.

Proof of Lemma 1

(Part 1) Let b be such that B = {j ∈ I : −∞ < j ≤ b} ∈ Ws and {j ∈ I : −∞ < j < b} /∈

Ws. Intuitively, such B is the “leftmost” winning coalition. Similarly, let a be such that

A = {j ∈ I : a ≤ j <∞} ∈ Ws and {j ∈ I : a < j <∞} /∈ Ws, so that A is the “rightmost”

winning coalition. Assumption 1 implies that Z = A ∩ B 6= ∅. Since all quasi-median voters

must be both in A and B, we also have Ms ⊂ Z. Next, we show that Z ⊂ Ms is also true.

To obtain a contradiction, assume the opposite. Then for some “connected” coalition X =

{j ∈ I : x ≤ j ≤ y} ∈ Ws the inclusion Z ⊂ X does not hold. Then, evidently, either the lowest

or the highest quasi-median voter is not in X. Suppose, without loss of generality, the latter is

the case. Since X is winning, coalition Y = {j ∈ I : −∞ < j ≤ y} (where y is the highest player

in X) is winning, and therefore Z ⊂ Y . But this implies that the highest quasi-median voter

is neither in X nor in Y , which is impossible and thus yields a contradiction. This proves that

Ms = Z 6= ∅.

(Part 2) Consider the case x ≥ y (the case x < y is treated similarly). Suppose x �z y.

Then {i ∈ I : wi (x) > wi (y)} ∈ Wz (is winning in z). But by SC, this coalition is connected,

and therefore includes all players from Mz. Conversely, suppose that wi (x) > wi (y) for all

i ∈ Mz. Now SC implies that the same inequality holds for player j whenever j ≥ i ∈ Mz.

Part 1 of the Lemma implies that {j ∈ I : ∃i ∈Mz such that j ≥ i} ∈ Wz. This establishes

that wi (x) > wi (y) for all i ∈ Mz implies x �z y, and completes the proof for this case. The

proof of the results for the � relation is analogous.

(Part 3) By part 1 of this Lemma, the set Ms is nonempty for each s ∈ S. Let

ms = max
x∈S:x≤s

min
m∈Mx

m. (B1)
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Evidently, if x < y, then mx ≤ my. Moreover, ms ∈ Ms. To prove this last statement, assume

the opposite; then ms = minm∈Mx for some x < s. Since we assumed ms /∈ Ms, then either

ms ∈ Mx is less than all elements in Ms or greater than all elements in Ms. In the first case,

ms < minm∈Ms m, which violates the definition of ms in (B1). In the second case, we find that

Ms lies to the left of Mx, violating the monotonic median voter property. This contradiction

proves that ms ∈Ms for all s ∈ S. Since the sequence (B1) is increasing, part 3 follows.

Transaction Cost and Discount Factor

In the proof of Theorem 2 in Appendix A, the two conditions that the discount factor β

has to satisfy are given by (A3) and (A4). Recall that in footnote 17, we defined ε̄ =

maxi∈I,x∈S |wi (x)− w̃i|. Suppose that ε̄ increases, which means that at least for one indi-

vidual i, payoff during transition, w̃i, decreases. This makes both (A3) and (A4) harder to

satisfy for a given β, but both conditions hold for some higher β. Consequently, for any ε̄ there

exists β0 < 1 such that for β > β0, Theorem 2 holds. This also implies that for any ε̄ > 0, as

β → 1, discounted payoffs are independent of transaction costs (i.e., do not depend on ε̄).

Additional Applications

We now illustrate how the characterization results provided in Theorems 1 and 2 can be applied

in a number of political economy environments considered in the literature. We show that in

some of these environments we can simply appeal to Theorem 4. Nevertheless, we will also see

that the conditions in Theorem 4 are more restrictive than those stipulated in Theorems 1 and

2. Thus, when Theorem 4 does not apply, Theorems 1 and 2 may still be applied directly.

Voting in Clubs

Following Roberts (1999), suppose that there are N states of the form sk = {1, . . . , k} for

1 ≤ k ≤ N . Roberts (1999) imposes the following strict increasing differences condition:

for all l > k and j > i, wj (sl)− wj (sk) > wi (sl)− wi (sk) , (B2)

and considers two voting rules: majority voting within a club (where in club sk one needs more

than k/2 votes for a change in club size) or median voter rule (where the agreement of individual

(k + 1) /2 if k is odd or k/2 and k/2 + 1 if k is even are needed). These two voting rules lead to
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corresponding equilibrium notions, which Roberts calls Markov Voting Equilibrium and Median

Voter Equilibrium, respectively. He establishes the existence of mixed-strategy equilibria with

both notions and shows that they both lead to the same set of stable clubs.

It is straightforward to verify that the environment introduced in Roberts (1999) is a special

case of our environment, and his two voting rules are special cases of the general voting rules

allowed in our framework. In particular, let us first weaken Roberts’s strict increasing differences

property to single-crossing, in particular, let us assume that

for all l > k and j > i, wi (sl) > wi (sk) =⇒ wj (sl) > wj (sk) , and (B3)

wj (sk) > wj (sl) =⇒ wi (sk) > wi (sl) .

Clearly, (B2) implies (B3) (but not vice versa). In addition, Roberts’s two voting rules can be

represented by the following sets of winning coalitions:

Wmaj
sk

= {X ∈ C : |X ∩ sk| > k/2} , and

Wmed
sk

=

{
{X ∈ C : (k + 1) /2 ∈ X} if k is odd;

{X ∈ C : {k/2, k/2 + 1} ⊂ X} if k is even.

Clearly, both
{
Wmaj
sk

}N
k=1

and
{
Wmed
sk

}N
k=1

satisfy Assumption 1 as well as the monotonic median

voter property in Definition 5. Let us also assume that Assumption 6 holds. In this case, this

can be guaranteed by assuming that wi (s) 6= wi (s′) for any i ∈ I and any s, s′ ∈ S (though a

weaker condition would also be sufficient). Then, it is clear that Theorem 4 from the previous

section applies to Roberts’s model and establishes the existence of a pure-strategy MPE and

characterizes the structure of stable clubs. It is important, however, to emphasize that while

our model nests Roberts’ environment as a special case, the characterization of MPE is obtained

here, unlike Roberts’s paper, only under the assumption of transaction costs and a sufficiently

large discount factor.

It can also be verified that Theorem 4 applies with considerably more general voting rules

(e.g., with different degrees of supermajority rule in each club). The following set of winning

coalitions nests various majority and supermajority rules: for each k, let the degree of superma-

jority in club sk be lk where k/2 < lk ≤ k and define the set a winning coalitions as:

W lk
sk

= {X ∈ C : |X ∩ sk| ≥ l}

Then, a relatively straightforward application of Theorem 4 establishes the following proposition.
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Proposition 4 In the voting in clubs model, with winning coalitions given by either Wmaj
sk ,

Wmed
sk

, or W lk
sk

, where k/2 < lk ≤ k for all k, the following results hold.

(i) The monotonic median voters property in Definition 5 is satisfied.

(ii) Suppose that preferences satisfy (B3) and Assumption 6. Then Assumptions 2(a,b) hold

and thus the characterization of MPE and stable states in Theorems 1 and 2 applies.

(iii) Moreover, if only odd-sized clubs are allowed, then in the case of majority or median

voter rules Assumption 3 also holds and thus the dynamically stable state (club) is uniquely

determined (up to payoff-equivalence) as a function of the initial state (club).

Proof of Proposition 4. (Part 1) Take msk = (k + 1) /2 if k is odd and ms = k/2 if k is

even. Evidently, for any of the rules Wmaj
sk , Wmed

sk
, or W lk

sk
where k/2 < lk ≤ k for all k, msk is

a quasi-median voter and, moreover, the sequence {msk}
N
k=1 is monotonically increasing.

(Part 2) In all cases Wmaj
sk , Wmed

sk
, or W lk

sk
where k/2 < lk ≤ k, Assumption 1 trivially

holds. From part 1 it follows that Theorem 4 (part 1) is applicable, so Assumption 2(a,b) holds.

(Part 3) In an odd-sized club sk, median voter is a single person (k + 1) /2, and in the case

of majority voting, we have sl �sk sk if and only if w(k+1)/2 (sl) > w(k+1)/2 (sk) because of the

single-crossing condition. In either case, if sl and sj are two different clubs, player (k + 1) /2 is

not indifferent between them by Assumption 6. This implies that either sl �sk sj of sj �sk sl
for any sj and sl, which completes the proof.

This proposition shows that a sharp characterization of dynamics of clubs and the set of

stable clubs can be obtained easily by applying Theorem 4 to Roberts’s original model or to

various generalizations. Another generalization, not stated in Proposition 4, is to allow for a

richer set of clubs. For example, the feasible set of clubs can also be taken to be of the form of

{k − n, . . . , k, . . . , k + n} ∩ I for a fixed n (and different values of k). It is also noteworthy that

the approach in Roberts’s paper is considerably more difficult and restrictive (though Roberts

also establishes the existence of mixed-strategy MPE for any β). Therefore, this application

illustrates the usefulness of the general characterization results presented in this paper.

Inefficient Inertia and Lack of Reform

We now provide a more detailed example capturing the main trade-offs discussed as motivation in

the Introduction. Consider a society consisting of N individuals and a set of finite states S. We

start with s0 = a corresponding to absolutist monarchy, where individual E holds power. More
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formally, Wa = {X ∈ C : E ∈ X}. Suppose that for all x ∈ S \ {a}, we have that I \ {E} ∈ Wx,

that is, all players except E together form a winning coalition. Moreover, there exists a state,

“democracy,” d ∈ S such that φ (x) = d for all x ∈ S \ {a}. In other words, starting with any

regime other that absolutist monarchy, we will eventually end up with democracy. Suppose also

that there exists y ∈ S such that wi (y) > wi (a), meaning that all individuals are better off in

state y than in absolutist monarchy, a. In fact, the gap between the payoffs in state y and those

in a could be arbitrarily large. It is then straightforward to verify that Assumptions 1–3 are

satisfied in this game.

To understand economic interactions in the most straightforward manner, consider the

extensive-form game described in Section 3. It is then clear that for β sufficiently large, E

will not accept any reforms away from a, since these will lead to state d and thus φ (a) = a.

This example illustrates the potential (and potentially large) inefficiencies that can arise in

games of dynamic collective decision-making and emphasizes that commitment problems are at

the heart of these inefficiencies. If the society could collectively commit to stay in some state

y 6= d, then these inefficiencies could be partially avoided. And yet such a commitment is not

possible, since once state y is reached, E can no longer block the transition to d.

We can take this line of argument even further. Suppose again that the initial state is s0 = a,

where Wa = {X ∈ C : E ∈ X}. To start with, suppose that there is only one other agent, P ,

representing the poor, and two other states, d1, democracy with limited redistribution, and d2,

democracy with extensive redistribution. Suppose Wd1 =Wd2 = {X ∈ C : P ∈ X} and

wE (d2) < wE (a) < wE (d1) and wP (a) < wP (d1) < wP (d2) ,

so that P prefers “extensive” redistribution. Given the fact that Wd1 =Wd2 = {{P} , {E,P}},

once democracy is established, the poor can implement extensive redistribution. Anticipating

this, E will resist democratization.

Now consider an additional social group, M , representing the middle class, and suppose

that the middle class is sufficiently numerous so that Wd1 = Wd2 = {{M,P} , {E,M,P}}.

The middle class is also opposed to extensive redistribution, so wM (a) < wM (d2) < wM (d1).

This implies that once state d1 emerges, there no longer exists a winning coalition to force

extensive redistribution. Now anticipating this, E will be happy to establish democracy (extend

the franchise). Thus, this example illustrates how the presence of an additional powerful player,

such as the middle class, can have a moderating effect on political conflict and enable institutional
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reform that might otherwise be impossible (see Acemoglu and Robinson, 2006, for examples in

which the middle class may have played such a role in the process of democratization).

Coalition Formation in Nondemocracies

As mentioned above, Theorems 1 and 2 can be directly applied in situations where the set of

states does not admit a (linear) order. We now illustrate one such example using a modification

of the game of dynamic coalition formation in Acemoglu, Egorov, and Sonin (2008).

Suppose that each state determines the ruling coalition in a society and thus the set of

states S coincides with the set of coalitions C. Members of the ruling coalition determine the

composition of the ruling coalition in the next period. A transition to any coalition in C is

allowed, which highlights that the set of states does not admit a complete order (one could

define a partial order over states, though this is not particular useful for the analysis here).26

Each agent i ∈ I is assigned a positive number γi, which we interpret as “political influence”

or “political power.” For any coalition X ∈ C, let γX ≡
∑

j∈X γj . Suppose also that payoffs are

given by

wi (X) =

{
γi/γX if i ∈ X

0 if i /∈ X (B4)

for any i ∈ I and any X ∈ C ≡ S.27 The restriction to (B4) here is just for simplicity. Also,

take any α ∈ [1/2, 1) as a measure of the extent of supermajority requirement. Define the set of

winning coalitions as

WX =
{
Y ∈ C :

∑
j∈Y ∩X

γj > α
∑

j∈X
γj

}
. (B5)

Clearly, this corresponds to weighted α-majority voting among members of the incumbent coali-

tion X (with α = 1/2 corresponding to simple majority). In addition, suppose that the following

simple genericity assumption holds:

γX = γY only if X = Y . (B6)

26In Acemoglu, Egorov and Sonin (2008), not all transitions are allowed. In particular, the focus is on a game of
“eliminations” from ruling coalitions in nondemocracies, so that once a particular individual is eliminated, he can
no longer be part of future ruling coalitions (either because he is “killed,” permanently exiled, or is permanently
excluded from politics by other means). In Web Appendix, we allow for restrictions on feasible transitions and
show how Proposition 5 can be generalized to cover the case of political eliminations considered in Acemoglu,
Egorov, and Sonin (2008).

27This is a special case of the payoff structure in Acemoglu, Egorov and Sonin (2008), where we allowed for any
payoff function satisfying the following three properties: (1) if i ∈ X and i /∈ Y , then wi (X) > wi (Y ); (2) if i ∈ X
and i ∈ Y , then wi (X) > wi (Y ) if and only if γi/γX > γi/γY ; and (3) i /∈ X and i /∈ Y , then wi (X) = wi (Y ).
The form in (B4) is adopted to simplify the discussion here.
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The following proposition can now be established.

Proposition 5 Consider the environment in Acemoglu, Egorov, and Sonin (2008). Then there

exists an arbitrarily small perturbation of payoffs such that Assumptions 1, 2(a,b), and 3 are

satisfied. Then Theorem 1 and Theorem 2 apply and characterize the stable states.

Proof of Proposition 5. Let us perturb players’ payoffs so that if i /∈ X, then wi (X) = εγX

where ε > 0 is small. Assumption 1 immediately follows from (B5) and that α ≥ 1/2. To prove

that Assumption 2(a) holds, it suffices to notice that Y �X X is impossible if γY > γX , so any

cycle would break at the least powerful coalition in it (which is unique because of genericity).

Similarly, to prove that Assumption 2(b) holds, notice that if a �-cycle exists, it is by genericity

a �-cycle. But if Y �X X and Z �X X, then γY > γZ implies Z �X Y , and thus Y �X Z:

indeed, all players in Z prefer Z to Y , and they form a winning coalition in X, for if they did

not, Z �X X would be impossible. Again, this means that any cycle would break at the least

powerful coalition in it. Now, take Y �X X and Z �X X. This implies αγX < γY < γX and

either γZ ≤ αγX or γZ > γX . If γZ ≤ αγX , all players who are not in Z prefer Y to Z: this

is obviously true for the part that belongs to Y , while if a player is neither in Y nor in Z, this

is true because of the perturbation we made, for in this case γY > αγX ≥ γZ . Since players

in Z do not form a winning coalition in this case, we have Z �X Y . Consider the second case

where γZ > γX ; then all players in Y prefer Y to Z, since γY < γZ . This means that Y �X Z

and thus Z �X Y . One can similarly show that Assumption 3 holds: if Y �X X and Z �X X,

then, by genericity, X � Y implies γY 6= γZ . Without loss of generality, γY > γZ , and in this

case Z �X Y . This completes the proof.

The Structure of Elite Clubs

In this subsection, we briefly discuss another example of dynamic club formation, which allows

a simple explicit characterization. Suppose there are N individuals 1, 2, . . . , N and N states

s1, s2, . . . , sN , where sk = {1, 2, . . . , k}. Preferences are such that for any n0 = n1 < j ≤ n2 < n3,

wk (sn0) = wk (sn1) < wk (sn3) < wk (sn2) . (B7)

These preferences imply that each player k wants to be part of the club, but conditional on being

in the club, he prefers to be in a smaller (more “elite”) one. In addition, a player is indifferent
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between two clubs he is not part of. Suppose that decisions are made by a simple majority rule

of the club members, so that winning coalitions are given by

Wsk = {X ∈ C : |X ∩ sk| > k/2} . (B8)

It is straightforward to verify that this environment satisfies Assumptions 1, 2(a,b), and 3.28

Hence, we can use Theorems 1 and 2 to characterize the set of stable states and the unique

outcome mapping. First, notice that state s1 is stable. This club only includes player 1, who is

thus the dictator, and who likes this state best, and thus by Axiom 1 we must have φ (s1) = s1.

In state s2, a consensus of players 1 and 2 is needed for a change. But s2 is the best state for

player 2, so φ (s2) = s2. In state s3, the situation is different: state s2 is stable and is preferred

to s3 by both 1 and 2 (and is the only such state), so φ (s3) = s2. Proceeding inductively, we

can show that club sj is stable if and only if j = 2n for n ∈ Z+, and the unique mapping φ that

satisfies Axioms 1–3 is

φ (sk) = s2blog2 kc , (B9)

where bxc denotes the greatest integer less than or equal to x ∈ R. The following proposition

summarizes the above discussion.

Proposition 6 In the elite club example considered above with preferences given by (B7) and

set of winning coalitions given by (B8), the following results hold.

1. Assumptions 1, 2(a,b), and 3 hold.

2. If, instead of (B7), for n0 < n1 < k ≤ n2 < n3 we have wk (sn0) < wk (sn1) < wk (sn3) <

wk (sn2), then single-crossing condition is satisfied (and monotonic median voter property

is always satisfied in this example).

3. Club sk is stable if and only if k = 2n for n ∈ Z+.

4. The unique mapping φ that satisfies Axioms 1–3 is given by (B9).

28Alternatively, one could consider a slight variation where a player who does not belong to either of any
two clubs prefers the larger of the two. In this case, Theorem 4 can also be applied. In particular, with this
variation, the single-crossing condition is satisfied (if wi (sy) > wi (sx) for y > x and j > i, then i /∈ x and
thus, j /∈ x, and wj (sy) > wj (sx); conversely, wj (sy) < wj (sx) means j ∈ sy, thus i ∈ sy, and therefore
wi (sy) < wi (sx)). The monotonic median voter condition holds as well (one can choose quasi-median voter in
state sj to be b(j + 1) /2c ∈Msj ; this sequence is weakly increasing in j).
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Proof of Proposition 6. (Part 1) Assumption 1 holds in each club sk, because the voting

rule is simple majority. To show that Assumption 2(a) holds, we notice that it is impossible to

have sl �sk sk for l > k, because all members of sk prefer sk to sl. Therefore, any cycle that

we hypothesize to exist will break at its smallest club. To show that Assumption 2(b) holds,

take any club s = sk. The set of clubs {sl} that satisfy sl �sk sk is the set of clubs that satisfy

k/2 < l < k. Hence, for any clubs sl, sm with l < m that satisfy sl �sk sk and sm �sk sk

we have sl �sk sm: indeed, players i ∈ {1, . . . , l} which form a simple majority will prefer sl

to sm, as they are included in both clubs, but prefer the smaller one. Therefore, sm �sk sl is

impossible for l < m. Let us now take sl �sk sk and sm �sk sk. This means k/2 < l ≤ k, and

either m ≤ k/2 or m ≥ k. If m ≤ k/2, then the set of members of club sk who prefer sm to sl

is {1, . . . ,m}: those who belong to sl but not to sm prefer sl, while those who do not belong to

either of sm and sl are indifferent. So, players only players in sm may strictly prefer sm to sl.

But they do not constitute at least half of the club in sk, so sm �sk sl. Consider the second case,

m ≥ k. But then all players in sl (i.e., a majority) will prefer sl to sm, and therefore sm �sk sl.

We have proved that Assumption 2(b) holds.

Finally, to show that Assumption 3 holds, take s = sk, sl and sm such that sl �sk sk,

sm �sk sk, and sl � sm. Without loss of generality assume l < m. But then sl �sk sm, since all

players from sl prefer sl, and they form a majority in sk. This proves that Assumption 3 holds.

(Part 2) Monotonic median voter property holds, since we can take msk to be player k/2

if k is even and (k + 1) /2 is odd; clearly, {msk}
N
k=1 is an increasing sequence of quasi-median

voters. To show that the single-crossing condition holds, take i, j ∈ I such that i < j and

sk, sl ∈ S with k < l. Suppose wi (sl) > wi (sk). This is possible if i ∈ sl but i /∈ sk or i /∈ sk, sl.

In either case, i /∈ sk, and therefore j /∈ sk. But then wj (sl) > wj (sk). Suppose now that

wj (sl) < wj (sk); this means that j ∈ sk, sl. But then i ∈ sk, sl, and therefore wi (sl) < wi (sk).

This establishes that the single-crossing condition holds.

(Part 3) Notice that it is never possible that sl �sk sk if k < l. We can therefore start with

smaller clubs. Club s1 is stable and 1 = 20. Suppose we proved the statement for j < k and

now consider club sk. If log2 k /∈ Z, then club sj for j = 2blog2 kc is stable and contains more

than half members of sk. Hence, sk is unstable. Conversely, if log2 k ∈ Z, then the only clubs

we know to be stable do not contain more than k/2 members, so sk is stable. This proves the

induction step.

(Part 4) If log2 k ∈ Z, then 2blog2 kc = k, and the statement follows from part 3. If log2 k /∈ Z,
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then s2blog2 kc is the only club which is preferred to sk by a majority (other stable clubs are either

larger than sk or at least twice as small as s2blog2 kc , i.e., more than two times smaller than sk).

The result follows.

Stable Voting Rules and Constitutions

Another interesting model that can be analyzed using Theorem 4 is Barbera and Jackson’s

(2004) model of self-stable constitutions. In addition, our analysis shows how more farsighted

decision-makers can be easily incorporated into Barbera and Jackson’s model.

Motivated by Barbera and Jackson’s model, let us introduce a somewhat more general frame-

work. The society takes the form of I = {1, . . . , N} and each state now directly corresponds to

a “constitution” represented by a pair (a, b), where a and b are integers between 1 and N . The

utility from being in state (a, b) is fully determined by a, so that each player i receives utility

wi [(a, b)] = wi (a) . (B10)

In contrast, the set of winning coalitions needed to change the state is determined by b ∈ Z+:

W(a.b) = {X ∈ C : |X| ≥ b} (B11)

(so b may be interpreted as the degree of supermajority).

In Barbera and Jackson’s model, individuals differ according to the probability with which

they will support a proposal for a specific reform away from the status quo. The parameter a

determines the (super)majority necessary for implementing the reform. The parameter b, on

the other hand, is the (super)majority necessary (before individual preferences are realized) for

changing the voting rule a. Expected utility is calculated before these preferences are realized

and defines wi [(a, b)]. Ranking individuals according to the probability with which they will

support the reform, Barbera and Jackson show that individual preferences satisfy (strict) single-

crossing and are (weakly) single-peaked.

For our analysis here, let us consider any situation in which preferences and winning coalitions

satisfy (B10) and (B11). It turns out to be convenient to reorder all pairs (a, b) on the real line

as follows: if (a, b) and (a′, b′) satisfy a < a′, then (a, b) is located on the left of (a′, b′), and

we write (a, b) < (a′, b′); the ordering of states with the same a is unimportant. Suppose that

wi (a), and thus wi [(a, b)], satisfies the single-crossing condition in Definition 3. This enables

us to apply Theorem 4 to any problem that can be cast in these terms, including the original

Barbera and Jackson model.
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Let us next follow Barbera and Jackson in distinguishing between two cases. In the case of

constitutions, any combination (a, b) is allowed, while in the case of voting rules, only the subset

of states where a = b is considered (then a = b is the voting rule); in both cases it is natural

to assume b > N/2. Barbera and Jackson call a voting rule or a constitution (a, b) self-stable

if there is no alternative voting rule (a′, b′) with a′ = b′ (or, respectively, constitution (a′, b′))

such that (a′, b′) is preferred to (a, b) by at least b players. The following proposition states the

relation between self-stable constitutions and dynamically stable sets.

Proposition 7 Consider the above-described environment and assume that preferences satisfy

single-crossing condition and Assumption 6 holds. Then:

1. Assumptions 1, 2(a,b) are satisfied.

2. There exist mappings φv for the case of voting rules (a = b) and φc for the case of consti-

tutions that satisfy Axioms 1–3.

3. The set of self-stable constitutions coincides with the set of dynamically stable states.

Proof of Proposition 7. (Part 1) Assumption 1 follows from b > N/2. Therefore,

Theorem 4 applies and Assumption 2(a,b) are satisfied.

(Part 2) By part 1, Theorem 1 is applicable. The result immediately follows.

(Part 3) By definition, a constitution (a, b) is self-stable if |i ∈ I : wi (a′) > wi (a)| < b for

all feasible a′. But this is equivalent to (a′, b′) �(a,b) (a, b) for all (a, b). By (5) we obtain that

φc [(a, b)] = (a, b), i.e., (a, b) is φc-stable. Hence, a self-stable constitution is a dynamically stable

state.

Vice versa, take any dynamically stable state (a, b). Suppose, to obtain a contradiction, that

(a, b) is not a self-stable constitution; let us prove that then φc [(a, b)] 6= (a, b). Consider the set

of constitutions Q = {(a′, b′)} such that (a′, b′) �(a,b) (a, b); since (a, b) is not self-stable, this set

is nonempty. Note that if (a′, b′) ∈ Q, then (a′, N) ∈ Q (because the second part of the pair of

rules does not enter the utility directly). Now take some player i and (a′, b′) ∈ Q that is most

preferred by i among the states within Q (or one of such states if there are several of these).

Consider state (a′, N) ∈ Q. First, since it lies in Q, (a′, N) �(a,b) (a, b). Second, this state is

φc-stable: indeed, if it were not the case, we would have some other (a′′, b′′) �(a′,N) (a′, N). This

means that each player prefers (a′′, b′′) to (a′, N), which of course implies that at least a players
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prefer (a′′, b′′) to (a, b), so (a′′, b′′) ∈ Q. But there is player i who at least weakly prefers (a′, b′)

(and therefore (a′, N), which is the same as far as immediate payoffs are concerned) to any other

element in Q. This means that such (a′′, b′′) does not exist, and state (a′, N) is stable. Axiom

3 then implies that φc (a, b) cannot equal (a, b), since state (a′, N) is φc-stable and is preferred

to (a, b). This completes the proof.

Coalition Formation in Democracy

We next briefly discuss how similar issues arise in the context of coalition formation in democ-

racies, for example, in coalition formation in legislative bargaining.29

Suppose that there are three parties in the parliament, 1, 2, 3, and any two of them would be

sufficient to form a government. Suppose that party 1 has more seats than party 2, which

in turn has more seats than party 3. The initial state is ∅, and all coalitions are possi-

ble states. Since any two parties are sufficient to form a government, we have W∅ = Ws =

{{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} for all s. First, suppose that all governments are equally strong

and a party with a greater share of seats in the parliament will be more influential in the coalition

government. Consequently, w3 (∅) ≤ w3 ({1, 2}) < w3 ({1, 2, 3}) < w3 ({1, 3}) < w3 ({2, 3});

other payoffs are defined similarly. In this case, it can be verified that φ (∅) = {2, 3}: indeed,

neither party 2 nor party 3 wishes to form a coalition with party 1, because party 1’s influence

in the coalition government would be too strong. The equilibrium in this example then coincides

with the minimum winning coalition.

However, as emphasized in the Introduction, the dynamics of coalition formation does not

necessarily lead to minimum winning coalitions. To illustrate this, suppose that governments

that have a greater number of seats in the parliament are stronger, so that w2 (∅) ≤ w2 ({1, 3}) <

w2 ({1, 2, 3}) < w2 ({2, 3}) < w2 ({1, 2}). That is, party 2 receives a higher payoff even though it

is a junior partner in the coalition {1, 2}, because this coalition is sufficiently powerful. We might

then expect that {1, 2} may indeed arise as the equilibrium coalition, that is, φ (∅) = {1, 2}.

Nevertheless, whether this will be the case depends on the continuation game after coalition

{1, 2} is formed. Suppose, for example, that after the coalition {1, 2} forms, party 1, by virtue

of its greater number of seats, can sideline party 2 and rule by itself. Let us introduced the

29See, for example, David Baron and John Ferejohn (1986), Austen-Smith and Banks (1988), Baron (1991),
Jackson and Boaz Moselle (2002), and Peter Norman (2002) for models of legislative bargaining. The recent
paper by Daniel Diermeier and Pohan Fong (2011) that studies legislative bargaining as a dynamic game without
commitment also raises a range of issues related to our general framework here.
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shorthand symbol “7→” to denote such a feasible transition, so that we have {1, 2} 7→ {1} (which

naturally presumes thatW{1,2} = {X ∈ C : 1 ∈ X}). Similarly, starting from the coalition {2, 3},

party 2 can also do the same, so thatW{2,3} = {X ∈ C : 2 ∈ X} and {2, 3} 7→ {2}. However, it is

also reasonable to suppose that once party 2 starts ruling by itself, then party 1 can regain power

by virtue of its greater seat share, that is, W{2} = {C ∈ C : 1 ∈ C} and thus {2} 7→ {1}. In this

case, the analysis in this paper immediately shows that φ (∅) = {2, 3}, that is, the coalition

{2, 3} emerges as the dynamically stable state.

What makes {2, 3} dynamically stable in this case is the fact that {2} is not dynamically

stable itself. This example therefore reiterates, in the context of coalition formation in democ-

racies, the insight that the instability of states that can be reached from a state s contributes

to the stability of state s.

Concessions in Civil War

Let us briefly consider an application of the ideas in this paper to the analysis of civil wars. This

example can also be used to illustrate how similar issues arise in the context of international wars

(see, e.g., James Fearon, 1996, 2004 and Robert Powell, 1998). Suppose that a government, G, is

engaged in a civil war with a rebel group, R. The civil war state is denoted by c. The government

can initiate peace and transition to state p, so that Wc = {C ∈ C : G ∈ C}. However, using the

shorthand “ 7→” introduced in subsection 6, we now have p 7→ r, where r denotes a state in

which the rebel group becomes strong and sufficiently influential in domestic politics. Moreover,

Wp = {X ∈ C : R ∈ X}, and naturally, wR (r) > wR (p). If wG (r) < wG (c), there will be no

peace and φ (c) = c despite the fact that we may also have wG (p) > wG (c). The reasoning for

why civil war may continue in this case is similar to that for inefficient inertia discussed above.

As an interesting modification, suppose next that the rebel group R can first disarm partially,

in particular, c 7→ d, where d denotes the state of partial disarmament. Moreover, d 7→ dp,

where the state dp involves peace with the rebels that have partially disarmed. Suppose that

Wdp = {{G,R}}, meaning that once they have partially disarmed, the rebels can no longer

become dominant in domestic politics. In this case, provided that wG (dp) > wG (d), we have

φ (c) = dp. Therefore, the ability of the rebel group to make a concession changes the set of

dynamically stable states. This example therefore shows how the role of concessions can also be

introduced into this framework in a natural way.

19



Taxation and Public Good Provision

In many applications preferences are defined over economic allocations, which are themselves

determined endogenously as a function of political rules. Our main results can also be applied

in such environments. Here we illustrate this by providing an example of taxation and public

good provision. Suppose there are N individuals 1, 2, . . . , N and N states s1, s2, . . . , sN , where

sk = {1, 2, . . . , k}. We assume that decisions on transitions are made by an absolute majority

rule of individuals who are enfranchised, so that winning coalitions take the form

Wsk = {X ∈ C : |X ∩ sk| > k/2} .

We also assume that the payoff of individual i is given by

wi (sj) = E
[(

1− τ sj
)
Ai +Gsj

]
, (B12)

where Ai is individual i’s productivity (we assume Ai > Aj for i < j, so that lower-ranked

individuals are more productive), E denotes the expectations operator, and τ sj is the tax rate

determined when the voting franchises sj . When an odd number of individuals are allowed to

vote, the tax rate is determined by the median. When there is an even number of voters, each

of two median voters gets to set the tax rate with equal probability. The expectations in (B12)

is included because of the uncertainty of the identity of the median voter in this case. Finally,

Gsj = h
(∑k

l=1 τ sjAl

)
is the public good provided through taxation, where h is an increasing

concave function.

For the single-crossing property, we require that for any i < j ∈ I and for any sl, sl+1 ∈ S,

wj (sl+1) > wj (sl)⇒ wi (sl+1) > wi (sl) and wi (sl+1) < wi (sl)⇒ wj (sl+1) < wj (sl) .

Denoting the equilibrium taxes in states sl and sl+1 by τ sl+1
and τ sl , the following condition is

sufficient (but not necessary) to ensure this:

E
(
1− τ sl+1

)
Aj − E (1− τ sl)Aj > E

(
1− τ sl+1

)
Ai − E (1− τ sl)Ai,

since the equilibrium levels of public goods, Gsl and Gsl+1
, cancel out from both sides. Therefore,

Eτ sl+1
> Eτ sl (B13)

is sufficient for single-crossing. Note that individual i, when determining the tax rate in sl,

would maximize (1− τ)Ai + h
(
τ
∑l

m=1Am

)
. This implies that individual i would choose τ i
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such that

Ai = h′
(
τ i
∑l

m=1
Am

)∑l

m=1
Am.

From the concavity of h it follows that for i < j, τ i > τ j . Now consider a switch from sl to

sl+1. Then, with probability 1/2, the tax is set by the same individual (then the tax rate is

the same in sl+1 as in sl), and with probability 1/2, by a less productive individual (then the

tax rate is greater in sl+1 than in sl). Therefore, (B13) holds and we can apply Theorem 4 to

characterize the dynamically stable states in this society. More interestingly, these results can

also be extended to situations where public goods [taxes] are made available differentially to

[imposed on] those who have voting rights (club members).

The Relationship Between D, von Neumann-Morgenstern Stable Set, and
Chwe’s Largest Consistent Set

The following definitions are from Chwe (1994) and John von Neumann and Oskar Morgenstern

(1944).

Definition 8 (Consistent Sets) For any x, y ∈ S and any X ∈ C, define relation →X by

x→X y if and only if either x = y or x 6= y and X ∈ Wx.

Definition 9 1. We say that state x is directly dominated by y (and write x < y) if there

exists X ∈ C such that x →X y and x ≺X y, where we write x ≺X y as a shorthand for

wi (x) < wi (y) for all i ∈ X.

2. We say that state x is indirectly dominated by y (and write x � y) if there exist

x0, x1, . . . , xm ∈ S such that x0 = x and xm = y and X0, X1, . . . , Xm−1 ∈ C such that

xj →Sj xj+1 and xj ≺Sj y for j = 0, 1, . . . ,m− 1.

3. A set S ⊂ S is called consistent if x ∈ S if and only if ∀y ∈ S,∀X ∈ C such that x→X y

there exists z ∈ S, where y = z or y � z, such that x ⊀X z.

Definition 10 (von Neumann-Morgenstern’s Stable Set)A set of states X ⊂ S is von

Neumann-Morgenstern stable if it satisfies the following properties:

1. (Internal stability) For any x, y ∈ X we have y �x x;

2. (External stability) For any x ∈ S \X there exists y ∈ X such that y �x x.
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Proposition 8 Suppose Assumptions 1 and 2 hold. Then:

1. The set of stable states D is the unique von Neumann-Morgenstern stable set;

2. D is the largest consistent set;

3. Any consistent set is either D or any subset of the set of exogenously stable states (and

vice versa, all such sets are consistent).

Proof of Proposition 8. (Part 1) We take the sequence of states
{
µ1, ..., µ|S|

}
satisfying

(A1). Suppose that set of states X is von Neumann-Morgenstern stable; let us prove that

X = D. Clearly, µ1 ∈ X , since µk �µ1 µ1 for any state µk. Now suppose that we have proved

that X ∩
{
µ1, . . . , µk−1

}
= D ∩

{
µ1, . . . , µk−1

}
for some k ≥ 2; let us prove that µk ∈ X if and

only if µk ∈ D. From Theorem 1 it follows that it suffices to prove that µk ∈ X if and only if

Mk = ∅. Suppose first thatMk 6= ∅; then, sinceMk = X ∩
{
µ1, . . . , µk−1

}
by construction, we

have that µl �µk µk for some l < k such that µl ∈ X . Hence, if µk ∈ X , then internal stability

property would be violated, and therefore µk /∈ X . Now consider the case whereMk = ∅. This

means that X ∩
{
µ1, . . . , µk−1

}
= ∅, and therefore there does not exist µl ∈ X such that l < k

and µl �µk µk. But by (A1), µl �µk µk whenever l > k. Hence, for any µl ∈ X such that l 6= k

we have µl �µk µk, and therefore µk ∈ X , for otherwise external stability condition would be

violated. This proves the induction step, and therefore completes the proof that X = D.

(Part 2) It is obvious that for any x, y ∈ S, x < y implies x � y. In our setup, however,

the opposite is also true, so x < y if and only if x� y. To see this, suppose that x� y; take a

sequence of states and a sequence of coalitions as in Definition 8. Let k ≥ 0 be lowest number such

that xk+1 6= x. This means that x →Xk
xk+1 (because xk = x) and ∀i ∈ Xk : wx (i) < wy (i).

By definition, x < y; note also that Xk ∈ Wx, since x 6= xk+1.

To show that set D is consistent, consider some mapping φ that satisfies Axioms 1–3. Take

any x ∈ D, and then take any y ∈ S and any X ∈ C such that x→X y. Let z = φ (y); then, as

follows from Axiom 1, either z = y or y � z. Now consider two possibilities: x = y and x 6= y. In

the first case, x = y ∈ D, so z = y = x. Since X is nonempty, property ∃i ∈ X : wx (i) ≥ wz (i)

is satisfied. Now suppose that x 6= y; then X ∈ Wx. On the other hand, z ∈ D. But it is

impossible that z �x x, since both x and z are stable (otherwise, Axiom 1 would be violated for

mapping φ), hence, in this case, ∃i ∈ X : wi (x) ≥ wi (z), too.
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Now take some x /∈ D. We need to show that there exist y ∈ S and X ∈ C such that

x →X y and for any z ∈ D which satisfies that either z = y or y � z, we necessarily have

∀i ∈ X : wi (x) < wi (z). Take y = φ (x) and X = {i ∈ I : wi (x) < wi (y)} ∈ Wx; then x→X y.

Note that it is impossible that for some z ∈ D we have y � z, for then y < z, and therefore

z �y y, which would violate Axiom 1. Therefore, any z ∈ D such that either z = y or y � z

must satisfy z = y. But then, by our choice of X, we have ∀i ∈ X : wi (x) < wi (z). This proves

that D is indeed a consistent set.

To show that D is the largest consistent set, suppose, to obtain a contradiction, that the

largest consistent set is S 6= D. Since D is consistent, we must have D ⊂ S. Consider sequence{
µ1, ..., µ|S|

}
satisfying (A1), and among all states in S \D 6= ∅ pick state x = µk ∈ S \D with

the smallest number, i.e., such that if µl ∈ S \ D, then l ≥ k. We now show that, according

to the definition of a consistent set, x /∈ S, which would contradict the assertion that state S

is consistent. Take some mapping φ that satisfies Axioms 1–3. Now let y = φ (x) ∈ D and

X = {i ∈ I : wi (x) < wi (y)} ∈ Wx; then x →X y and, since x /∈ D, y 6= x, which by (A1)

implies that y = µl for l < k. Now if for some z ∈ S we have y � z, then y < z, and hence

z �y y, which implies z = µj for some j < l < k. But then z /∈ S \ D, and therefore z ∈ D.

However, it is impossible that y, z ∈ D and z �y y, as this would violate Axiom 1. Therefore,

if for some z ∈ S either z = y or y � z, then in fact z = y. But for such z, we do have

∀i ∈ X : wi (x) < wi (z), by construction of X. We get a contradiction, since by definition of a

consistent set x /∈ S, while we picked x ∈ S \D. This proves that D is the largest consistent set.

(Part 3) By part 2, if S is a consistent set, then S ⊂ D. Suppose that S 6= D, but S

includes a state which is not exogenously stable. Suppose x ∈ S is not exogenously stable and

y ∈ D \ S; then x →X y for some X ∈ Wx. Since x ∈ S, there exists z ∈ S where either z = y

or y � z, such that ∃i ∈ X : wi (x) ≥ wi (z). But y ∈ D \S, and hence y � z, which implies, as

before, y < z and z �y y. However, this is impossible, since y, z ∈ D. This contradiction proves

that if S 6= D, S may not include any state which is not exogenously stable.

Consider, however, any S which consists of exogenously stable states only. Take any x ∈ S.

If y ∈ S and X ∈ C are such that x→X y, then x = y. In that case, we can take z = y ∈ S and

find that condition ∃i ∈ X : wi (x) ≥ wi (z) trivially holds. Now take any x /∈ S. Consider two

possibilities. If state x is exogenously stable, then take X = I and y = x; then x →X y. If for

some z ∈ S we had y � z, then, in particular, y →Y z for some Y ∈ C, which is incompatible

with z 6= y; at the same time, z = y is impossible, as z ∈ S and y = x /∈ S. This means that for
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this y there does not exist z ∈ S such that either z = y or y � z, and therefore x = y should not

be in S. Finally, suppose that x is not exogenously stable. Again, consider mapping φ satisfying

Axioms 1–3 and take y = φ (x) and X = {i ∈ I : wi (x) < wi (y)} ∈ Wx; then x →X y. By

the same reasoning as before, if for some z ∈ S either z = y or y � z, then z = y, because

y � z would imply z �y y for y, z ∈ D. But for such z, we have ∀i ∈ X : wi (x) < wi (z) by

construction of X. This proves that S is indeed a consistent set, which completes the proof.
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